Perceiving and Reasoning About Liquids Using Fully Convolutional Networks
نویسندگان
چکیده
Liquids are an important part of many common manipulation tasks in human environments. If we wish to have robots that can accomplish these types of tasks, they must be able to interact with liquids in an intelligent manner. In this paper, we investigate ways for robots to perceive and reason about liquids. That is, the robots ask the questions What in my sensory data stream is liquid? and How can I use that to infer all the potential places liquid might be? We collected two datasets to evaluate these questions, one using a realistic liquid simulator and another on our robot. We used fully convolutional neural networks to learn to detect and track liquids across pouring sequences. Our results show that our networks are able to perceive and reason about liquids, and that integrating temporal information is important to performing these tasks well.
منابع مشابه
Detection and Tracking of Liquids with Fully Convolutional Networks
Recent advances in AI and robotics have claimed many incredible results with deep learning, yet no work to date has applied deep learning to the problem of liquid perception and reasoning. In this paper, we apply fully-convolutional deep neural networks to the tasks of detecting and tracking liquids. We evaluate three models: a single-frame network, multi-frame network, and a LSTM recurrent net...
متن کاملTowards Learning to Perceive and Reason About Liquids
Recent advances in AI and robotics have claimed many incredible results with deep learning, yet no work to date has applied deep learning to the problem of liquid perception and reasoning. In this paper, we apply fully-convolutional deep neural networks to the tasks of detecting and tracking liquids. We evaluate three models: a single-frame network, multi-frame network, and a LSTM recurrent net...
متن کاملAI: Safety and Robustness Certification of Neural Networks with Abstract Interpretation
We present AI, the first sound and scalable analyzer for deep neural networks. Based on overapproximation, AI can automatically prove safety properties (e.g., robustness) of realistic neural networks (e.g., convolutional neural networks). The key insight behind AI is to phrase reasoning about safety and robustness of neural networks in terms of classic abstract interpretation, enabling us to le...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.01564 شماره
صفحات -
تاریخ انتشار 2017